To content
Scientific Assistant

M.Sc. Daniel Kotzem

Main activities

  • X-ray diffraction (XRD)
  • Acoustic emissions (AE), high frequency pulse measurements
  • Coordination of the advanced training course "Einführung in die mechanische Werkstoffprüfung"

Overview of research projects in group Additive Manufacturing

Awards

  • DVM-Juniorpreis (1st place)
    5th Conference of the DVM Working Group “Additiv gefertigte Bauteile und Strukturen", Web-Conference, 04-05 Nov. 2020

Publications and presentations

16) Kotzem, D.; Gerdes, L.; Walther, F.:
Microstructure and strain rate-dependent deformation behavior of PBF-EB Ti6Al4V lattice structures.
Materials Testing 63 (6), (2021) 529-536. https://doi.org/10.1515/mt-2020-0087

15) Kotzem, D.; Kleszczynski, S.; Stern, F.; Elspaß, A.; Tenkamp, J.; Witt, G.; Walther, F.:
Impact of single structural voids on fatigue properties of AISI 316L manufactured by laser powder bed fusion.
International Journal of Fatigue 148, 106207 (2021) 1-10. https://doi.org/10.1016/j.ijfatigue.2021.106207

14) Kotzem, D.; Tazerout, D.; Arold, T.; Niendorf, T.; Walther, F.:
Failure mode map for E-PBF manufactured Ti6Al4V sandwich panels.
Engineering Failure Analysis 121, 105159 (2021) 1-14. https://doi.org/10.1016/j.engfailanal.2020.105159

13) Teschke, M.; Kotzem, D.; Beermann, L.; Walther, F.:
Einfluss hoher Temperatur auf die mechanischen Eigenschaften von mittels Elektronenstrahlschmelzen (E-PBF) gefertigten γ-Titanaluminiden.
Werkstoffprüfung 2020 – Werkstoffe und Bauteile auf dem Prüfstand (2020), Hrsg.: J. B. Langer und M. Wächter. https://doi.org/10.48447/WP-2020-010

12) Kotzem, D.; Ohlmeyer, H.; Walther, F.:
Damage tolerance evaluation of a unit cell plane based on electron beam powder bed fusion (E-PBF) manufactured Ti6Al4V alloy.
Procedia Structural Integrity 28 (2020) 11-18. https://doi.org/10.1016/j.prostr.2020.10.003 - Download

11) Kotzem, D.; Tazerout, D.; Walther, F.:
Vorhersage des dominierenden Versagensmechanismus mittels Elektronenstrahlschmelzen (E-PBF) gefertigter Ti6Al4V Sandwichstrukturen.
5. Tagung des DVM-AK Additiv gefertigte Bauteile und Strukturen, Hrsg.: H.-A. Richard, DVM e.V., ISSN 2509-8772 (2020) 15-27.

10) Kotzem, D.; Arold, T.; Niendorf, T.; Walther, F.:
Damage tolerance evaluation of E-PBF-manufactured Inconel 718 strut geometries by advanced characterization techniques.
Materials 13 (1), 247 (2020) 1-21. https://doi.org/10.3390/ma13010247 - Download

9) Kotzem, D.; Arold, T.; Niendorf, T.; Walther, F.:
Influence of specimen position on the build platform on the mechanical properties of as-built direct aged electron beam melted Inconel 718 alloy.
Materials Science and Engineering: A 772 (2020) 138785 1-13. https://doi.org/10.1016/j.msea.2019.138785

8) Kotzem, D.; Dumke, P.; Sepehri, P.; Tenkamp, J.; Walther, F.:
Effect of miniaturization and surface roughness on the mechanical properties of the electron beam melted superalloy Inconel®718.
Progress in Additive Manufacturing 5 (2020) 267-276. https://doi.org/10.1007/s40964-019-00101-w

7) Wegner, N.; Kotzem, D.; Walther, F.:
Korrosions- und Korrosionsermüdungsverhalten der additiv gefertigten Magnesiumlegierung WE43 für biomedizinische Anwendungen.
Werkstoffprüfung 2019 - Fortschritte in der Werkstoffprüfung für Forschung und Praxis, Hrsg.: H.-J. Christ, ISBN 978-3-88355-418-1 (2019) 161-166.

6) Kotzem, D.; Beermann, L.; Awd, M.; Walther, F.:
Mechanical and microstructural characterization of arc-welded Inconel 625 alloy.
Materials 12 (22), 3690 (2019) 1-10. https://doi.org/10.3390/ma12223690 - Download

5) Kotzem, D.; Tenkamp, J.; Walther, F.:
Bestimmung der Schadenstoleranz von im Elektronenstrahlschmelzverfahren hergestellten Inconel 718-Stegproben unter Schwingbeanspruchung.
4. Tagung des DVM-AK Additiv gefertigte Bauteile und Strukturen, Hrsg.: H.-A. Richard, DVM e.V., ISSN 2509-8772 (2019) 129-137.

4) Kotzem, D.; Stern, F.; Walther, F.:
Bestimmung quasistatischer Druckeigenschaften bei Raum- und Hochtemperatur an additiv gefertigten Miniaturproben.
Additive Fertigung von Bauteilen und Strukturen. Springer Vieweg, ISBN 978-3-658-27411-5 (2019) 145-156. https://doi.org/10.1007/978-3-658-27412-2_9

3) Wegner, N.; Kotzem, D.; Wessarges, Y.; Emminghaus, N.; Hoff, C.; Tenkamp, J.; Hermsdorf, J.; Overmeyer, L.; Walther, F.:
Corrosion and corrosion fatigue properties of additively manufactured magnesium alloy WE43 in comparison to titanium alloy Ti-6Al-4V in physiological environment.
Materials 12 (18), 2892 (2019) 1-24. https://doi.org/10.3390/ma12182892 - Download

2) Awd, M.; Stern, F.; Kampmann, A.; Kotzem, D.; Tenkamp, J.; Walther, F.:
Microstructural characterization of the anisotropy and cyclic deformation behavior of selective laser melted AlSi10Mg structures.
Metals 8 (10), 825 (2018) 1-14. https://doi.org/10.3390/met8100825 - Download

1) Droste, M.; Günther, J.; Kotzem, D.; Walther, F.; Niendorf, T.; Biermann, H.:
Cyclic deformation behavior of a damage tolerant CrMnNi TRIP steel produced by electron beam melting.
International Journal of Fatigue 114 (2018) 262-271. https://doi.org/10.1016/j.ijfatigue.2018.05.031

 

List of all publications

13) Stern, F. (V.); Grabowski, J.; Kleszczynski, S.; Kotzem, D.; Elspaß, A.; Witt, G.; Walther, F.:
Influence assessment of artificial defects on the fatigue behavior of additively manufactured stainless steel 316LVM.
ICSI2021, Virtual 4th International Conference on Structural Integrity, Web Conference, 30. Aug.-01. Sept. (2021).

12) Teschke, M. (V.); Kotzem, D.; Beermann, L.; Walther, F.:
Einfluss hoher Temperatur auf die mechanischen Eigenschaften von mittels Elektronenstrahlschmelzen (E-PBF) gefertigten γ-Titanaluminiden.
Werkstoffprüfung 2020, Web-Konferenz, 03.-04. Dez. (2020).

11) Awd, M. (V.); Stern, F.; Kotzem, D.; Tenkamp, J.; Walther, F.:
Microstructure-based assessment and modeling of fatigue evolution and damage in additive manufactured metals.
ASTM ICAM 2020, ASTM International Conference on Additive Manufacturing, Web Conference, 16.-20. Nov. (2020).

10) Kotzem, D. (V.); Tazerout, D.; Walther, F.:
Vorhersage des dominierenden Versagensmechanismus mittels Elektronenstrahlschmelzen (E-PBF) gefertigter Ti6Al4V Sandwichstrukturen.
5. Tagung des DVM-AK Additiv gefertigte Bauteile und Strukturen, Web-Konferenz, 04.-05. Nov. (2020).

9) Awd, M. (V.); Stern, F.; Kotzem, D.; Tenkamp, J.; Walther, F.:
Multiscale experimental assessment and model-based correlation of fatigue damage evolution in additively manufactured metals.
MSE 2020, Materials Science and Engineering, Darmstadt, 23.-25. Sept. (2020).

8) Kotzem, D. (V.); Ohlmeyer, H.; Walther, F.:
Damage tolerance evaluation of a unit cell plane based on electron beam powder bed fusion (E-PBF) manufactured Ti6Al4V alloy.
1st Virtual European Conference on Fracture, Web Conference, 29.-01. Juli (2020).

7) Stern, F. (V.) ; Kotzem, D.; Walther, F.:
Advanced characterization techniques for fatigue life estimation of additively manufactured metal samples and complex geometries.
FDMD2020 - Fatigue Design and Material Defects, Web Conference, 26.-28. May (2020).

6) Kotzem, D. (V.); Ohlmeyer, H.; Walther, F.:
Bewertung der Schädigungstoleranz innerhalb einer Einheitszellenebene der E-PBF gefertigten Ti6Al4V-Legierung.
Fachtagung Werkstoffe und Additive Fertigung, Web-Konferenz, 13.-15. Mai (2020).

5) Wegner, N. (V.); Kotzem, D.; Walther, F.:
Korrosions- und Korrosionsermüdungsverhalten der additiv gefertigten Magnesiumlegierung WE43 für biomedizinische Anwendungen.
Werkstoffprüfung 2019, Neu-Ulm, 03.-04. Dez. (2019).

4) Kotzem, D. (V.); Tenkamp, J.; Walther, F.:
Bestimmung der Schadenstoleranz von im Elektronenstrahlschmelzverfahren hergestellten Inconel 718-Stegproben unter Schwingbeanspruchung.
4. Tagung des DVM-AK Additiv gefertigte Bauteile und Strukturen, Berlin, 06.-07. Nov. (2019).

3) Kotzem, D. (V.); Dumke, P.; Sepehri, P.; Tenkamp, J.; Walther, F.:
Effect of miniaturization and surface roughness on the mechanical properties of EBM-manufactured superalloy Inconel®718.
ACEX 2019 - 13th International Conference on Advanced Computational Engineering and Experimenting, Athens, Greece, 01.-05. July (2019).

2) Arold, T. (V.); Kotzem, D.; Tenkamp, J.; Brenne, F.; Niendorf, T.; Walther, F.:
Mechanical performance and deformation characteristics of cellular structures produced by additive manufacturing techniques.
CellMAT 2018, Bad Staffelstein, 24.-26. Okt. (2018).

1) Niendorf, T. (V.); Kotzem, D.; Tenkamp, J.; Walther, F.; Brenne, F.:
Failure mechanisms and damage tolerance of cellular structures produced by additive manufacturing techniques.
MSE 2018, Materials Science and Engineering, Darmstadt, 26.-28. Sept. (2018).

 

List of all presentations

Location & approach

The campus of TU Dort­mund University is located close to interstate junction Dort­mund West, where the Sauerlandlinie A45 (Frankfurt-Dort­mund) crosses the Ruhrschnellweg B1/A40. The best interstate exit to take from A45 is "Dort­mund-Eichlinghofen (6)" (closer to Campus Süd), and from B1/A40 "Dort­mund-Barop (44)" (closer to Campus Nord). Signs for the uni­ver­si­ty are located at both exits. Follow the signs towards Campus-Süd.

The Department of Materials Test Engineering (WPT) is located in the "Maschinenbau III" building, which can be reached via entrance 41, where parking spaces are available. The secretariat is located on the third floor in E 03 - room 3.027.

For the approach to the TU Dort­mund University you will find the navigation on Google Maps.

Address for navigation devices:

Baroper Straße 303

D-44227 Dortmund

Germany

TU Dort­mund University has its own train station ("Dort­mund Uni­ver­si­tät"). From there, suburban trains (S-Bahn) leave for Dort­mund main station ("Dort­mund Hauptbahnhof") and Düsseldorf main station via the "Düsseldorf Airport Train Station" (take S-Bahn number 1). The uni­ver­si­ty is easily reached from Bochum, Essen, Mülheim an der Ruhr and Duisburg. From there, Campus Süd, where the Department of Materials Test Engineering (WPT) is located, can be reached in five minutes via the H-Bahn in the direction of "Eichlinghofen" or "Campus Süd".

After leaving the H-Bahn station "Campus Süd" cross the small street and go straight forward. Take the stairs (elevator on the left side).
Turn right directly under the canopy, go approximately 200 m, the Building "Maschinenbau III" is at the end of the path.

The office is located on the third floor in E03 - room 3.027.

Dortmund's public transport company DSW21 offers an interactive route network map with timetable information.

The AirportExpress is a fast and convenient means of transport from Dort­mund Airport (DTM) to Dort­mund Central Station, taking you there in little more than 20 minutes. From Dort­mund Central Station, you can continue to the uni­ver­si­ty campus by interurban railway (S-Bahn). A larger range of in­ter­na­tio­nal flight connections is offered at Düsseldorf Airport (DUS), which is about 60 kilometres away and can be directly reached by S-Bahn from the uni­ver­si­ty station.

The H-Bahn is one of the hallmarks of TU Dort­mund University. There are two stations on Campus Nord. One ("Dort­mund Uni­ver­si­tät S") is directly located at the suburban train stop, which connects the uni­ver­si­ty directly with the city of Dort­mund and the rest of the Ruhr Area. Also from this station, there are connections to the "Technologiepark" and (via Campus Süd) Eichlinghofen. The other station is located at the dining hall at Campus Nord and offers a direct connection to Campus Süd every five minutes.

Campus Weather

Weather Information
Open weather forecast